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ABSTRACT

The spatial variability of two fundamental morphological variables is investigated for rivers having a wide range of
discharge (five orders of magnitude). The variables, water-surface width and average depth, were measured at 58 to 888
equally spaced cross-sections in channel links (river reaches between major tributaries). These measurements provide
data to characterize the two-dimensional structure of a channel link which is the fundamental unit of a channel network.

The morphological variables have nearly log-normal probability distributions. A general relation was determined
which relates the means of the log-transformed variables to the logarithm of discharge similar to previously published
downstream hydraulic geometry relations. The spatial variability of the variables is described by two properties: (1) the
coefficient of variation which was nearly constant �0Ð13–0Ð42� over a wide range of discharge; and (2) the integral
length scale in the downstream direction which was approximately equal to one to two mean channel widths. The
joint probability distribution of the morphological variables in the downstream direction was modelled as a first-order,
bivariate autoregressive process. This model accounted for up to 76 per cent of the total variance. The two-dimensional
morphological variables can be scaled such that the channel width–depth process is independent of discharge. The scaling
properties will be valuable to modellers of both basin and channel dynamics. Published in 2002 John Wiley & Sons, Ltd.
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INTRODUCTION

Two characteristics (length and change in elevation) of channel links, defined to be channel reaches between
two adjacent junctions in a network (Shreve, 1966), have been investigated thoroughly by Horton (1945),
Shreve (1967, 1969), Gupta and Waymire (1989), and Tarboton et al. (1989). However, the statistical charac-
teristics of the variability of channel width and depth within these links have received less attention. Variability
of width and depth can be conceptualized as a wave spectrum in which deterministic processes are character-
ized by individual wavelengths (Speight, 1965; Chang and Toebes, 1970; Church, 1972; Thornes, 1976a,b)
and stochastic processes are characterized by bands of wavelengths (Ferguson, 1976; Howard and Hemberger,
1991). At the small-scale end of the spectrum, some investigators (Church, 1972; Thornes, 1976a,b; Furbish,
1985; Madej, 1999) found autocorrelations of width, slope, and thalweg in the downstream direction that
suggests these stochastic processes have a ‘memory’ or a correlation distance. This correlation distance can
be defined as the integral length scale analogous to the integral time scale used to characterize turbulence
(Batchlelor, 1982; Hinze, 1975).

Characterizing spatial variability depends upon the nature of the problem. Interpreting the variation of
channel geometry (Wolman, 1955; Knighton, 1975; Leopold and Wolman, 1957; Speight, 1965; Ferguson,
1975, 1976), evaluating aquatic habitats (Mathur et al., 1985; Bren, 1993; Johnson, 1994; Currier, 1995;
Myers and Swanson, 1997), and studying the dispersion of tracers (Hays et al., 1966; Sabol and Nordin,
1978; Nordin and Troutman, 1980; Bencala et al., 1993; D’Angelo et al., 1993; Runkel and Bencala, 1995)
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require knowledge of the marginal probability distribution of widths and depths, while flood (Fread, 1985;
Rashid and Chaudhry, 1995; Wiele and Smith, 1996) and sediment routing models (Pickup and Higgins, 1979;
Miller, 1994; Dietrich and Whiting, 1989) need both the marginal probability distributions and the proper
length scales over which relatively small-scale variability can be suitably averaged to provide useful physical
parameters for modelling.

Most geomorphic studies of stream channels have not been designed to address small-scale spatial variabil-
ity. Hydraulic geometry has been measured at a few irregularly spaced cross-sections (Leopold and Maddock,
1953; Wolman, 1955; Andrews, 1979) and therefore cannot be used to determine statistical or spectral char-
acteristics. Planform studies based on aerial photographs (Speight, 1965; Chang and Toebes, 1970; Ferguson,
1975; Dury, 1984; Howard and Hemberger, 1991) can provide the necessary samples and regular spacing
but cannot determine characteristics of depth. Some regularly spaced measurements have been made on a
few ephemeral Arctic rivers (Church, 1972) and on a few Spanish rivers (Thornes, 1976a,b). In both cases
the range of discharges was about one order of magnitude. The focus of this study was to investigate the
character of the spatial variability of channel morphology at the channel link-scale over a much wider range
of discharges. Our goal was to provide statistical characterization of widths and depths within a channel link
so that three-dimensional models of channels could be created by building upon the one-dimensional work.
Thus, the specific purposes were: (1) to determine the character of the probability distributions of surface-
water width and average depth and their relations to discharge; (2) to develop a suitable model of spatial
variability in channels; and (3) to determine the integral length scale.

FIELD SITES

In order to obtain measurements spanning five to six orders of magnitude of discharge, measurements had to
be collected from rivers of different size and in some cases for multiple discharges in the same river. Each
river reach was a channel link with no major tributaries so that the discharge was constant. The small river was
Clear Creek, which is a partially incised mountain stream on the eastern slope of the Front Range of Colorado
(Figure 1). The reach was 920 m between Mill Creek and Fall River (Table I). It is essentially straight with no
step–pool features, bed material of cobbles and boulders (D50 D 180 mm; Jarrett, 1984), and banks consisting
of gravel, boulders, and alluvium. The medium river was Powder River which is a high-plains meandering
river bordered by badlands and draining northeastern Wyoming and southeastern Montana (Hembree et al.,
1952). The reach was 4860 m between Clear Creek in Wyoming and Little Powder River in Montana (Moody
et al., 1999). This reach has pool–riffle features that are clearly present at discharges less than about 6 m3 s�1.
The bed material is primarily sand (D50 D 0Ð25 mm) with about 2 per cent gravel (Hembree et al., 1952).
The banks are formed by low floodplains or terraces of various heights and are composed of silt and sand
(Leopold and Miller, 1954). The large river was the Mississippi River and, even though attempts have been
made to control flooding with artificial levees, much of the river flows through a natural channel formed by
the river. Two reaches were selected. One reach on the Upper Mississippi River was 48 000 m between the
Meramec and Kaskaskia Rivers. Bed material is predominantly medium sand (D50 D 0Ð38 mm; Moody and
Meade, 1992) and banks are composed of sand but intersected by lateral rock dykes spaced about 500 m apart.
The other reach was 571 000 m on the Lower Mississippi River between the mouth of the Ohio River (954
river miles upstream from the Gulf of Mexico) and the mouth of the White River (600 river miles upstream
from the Gulf of Mexico). Bed material is predominantly medium and coarse sand (D50 D 0Ð57 mm; Moody
and Meade, 1993a,b), and banks are alluvial but often protected by revetment. The Lower Mississippi River
has multiple channels in places, while the other three rivers have a single channel.

METHODS

Morphological variables were measured and calculated within the reaches described above at equally spaced
cross-sections located about one mean-channel width apart (Table I). The basic cross-sectional field data were
two-dimensional and consisted of horizontal distances measured from the left bank and water depths. For the
Lower Mississippi River, measurements were collected from a digital elevation model based on hydrographic
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Figure 1. Map showing the location of the four study reaches. The numbers along the channel correspond to the number of the
cross-section. The channels are drawn at four different scales

surveys for 1988–89. Depths were measured from 3Ð3 m (10 feet) above the low-water reference plane
which corresponded to discharges of 8800 m3 s�1 at Hickman, Kentucky (River Mile 920); 10 900 m3 s�1 at
Memphis, Tennessee (River Mile 735); and 11 800 m3 s�1 at Helena, Arkansas (River Mile 663).

The spatial variability of two morphological variables (water-surface width, W, and average depth, D ;
Figure 2) was characterized using several statistical methods. First, quantile–quantile plots of the raw data
and of log10-transformed data were examined to assess adequacy of a normality assumption. The logarithmic
transform was found to yield nearly normal data and was then used throughout the analysis. Second, the
mean of log-transformed variables was regressed with the logarithm of discharge to determine adherence to
power-law scaling that is typically seen in channel geometry studies. Third, changes in the coefficient of
variation with discharge are examined to determine whether the distributions obey a simple scaling structure.
Fourth, a bivariate autoregressive model was fit in order to examine the integral length scales of width and
depth. Variation of the integral length scale with discharge was again examined using logarithmic regression.

Trends

The only adjustment for trends (or non-stationarity) that was done was to divide the data for the Lower
Mississippi River into three subreaches. This non-stationarity was not the result of a continuous trend but
rather conceived as two discontinuities dividing the three subreaches. The approximate locations of the
discontinuities for the Lower Mississippi River were at River Miles 900 and 840. These were proposed by
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Table I. Spatial sampling characteristics of the four channels

Characteristics Clear Creek Powder River Upper Lower
Mississippi Mississippi

River River

Approximate
discharge during
sampling �m3 s�1�

0Ð9 1Ð5 17 4620b 8800c

10 900d

11 800e

Annual mean
discharge
�109 m3 a�1�a

0Ð13 0Ð4 0Ð4 165 400f

Average slope 0Ð015 0Ð0015 0Ð0015 0Ð000096 0.000088g

Length of study
reach (m)

920 1980 3420 48 000 571 200

Sinuosity 1Ð02 1Ð20 1Ð20 1Ð06 1–3h

Number of
cross-sections

93 67 58 97 888

Average number
of depth
measurements

17 22 19 55 variablei

Sampling interval
between
cross-sections (m)

10 30 60 500 644

Mean channel
width (m)

11Ð4 33Ð5 48Ð5 576 1150

Length of study
reach (mean
channel widths)

81 59 71 83 497

a Mean annual discharges, US Geological Survey (1989, 1997).
b Upper Mississippi River Mile 167Ð6 to 136Ð2 (river miles decrease downstream).
c Approximately from Lower Mississippi River Mile 954 to 900 (0–76 mean channel widths).
d Approximately from Lower Mississippi River Mile 900 to 840 (76–160 mean channel widths).
e Approximately from Lower Mississippi River Mile 840 to 600 (160–495 mean channel widths).
f Moody and Meade (1993a).
g US Army Corps of Engineers, Memphis (1995).
h Schumm et al., (1994).
i Depth measurements were 15 to 30 m apart (S. Cobb, pers. comm., 1998).

Schumm et al. (1994) based on lithology and faulting with each subreach having significantly different river
slopes. Reaches A, B, and C, correspond to above the New Madrid Bend (River Mile 954 to 900), the New
Madrid Bend (River Mile 900 to 840), and below the New Madrid Bend (River Mile 840 to 600). Some
experimentation was done with polynomial trend fitting in order to account for some of the minor trends
such as the slight widening of the Upper Mississippi River in the downstream direction. However, it was felt
that such a procedure would generally have been arbitrary, without physical justification, and would have
addressed only secondary effects. Therefore, it was better to let the autoregressive model account for these
minor trends.

Autoregressive model

The spatial dependence in the data was analysed by fitting a bivariate order-one autoregressive model
to the mean-corrected width and depth series. Such a model provides a relation for predicting successive
values of surface width and average depth in the downstream direction. Because a logarithmic transformation
rendered the data more nearly normal in most cases, the autoregressive model was fitted using transformed
data. Letting Wn and Dn be the water-surface width and the average depth, respectively, at cross-section n,
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Figure 2. Plots of the basic data of water-surface widths and average depths. Plotted on the left-hand side are water-surface widths
normalized by the mean channel width for each river. Plotted on the right-hand side are average depths normalized by the mean average

depth for each river. Plots on the right-hand side correspond to the same locations as noted on the left-hand side
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then the bivariate process is defined by:

Zn D
[

Z1n

Z2n

]
D

[
log Wn � �W

log Dn � �D

]
�1�

where �W and �D are the means of the log-transformed variables. Thus, Zn is a vector of length two. The
autoregressive model for the process Zn is:

Zn D �Zn−1 C An �2�

In this equation, Zn , measured at cross-section n, is expressed in terms of Zn−1, which is measured at
cross-section n � 1 immediately upstream from cross-section n. The matrix

� D
[

�11 �12

�21 �22

]

is estimated from the data; its magnitude gives a measure of the degree of dependence in the variables from
cross-section to cross-section. An is an independent bivariate random series representing the unexplained
variability in the model.

In order to estimate the integral length scales, it is further assumed that the cross-sectional data Zn were
measurements of a continuous spatial process:

Y .x/ D
[

Y1�x�
Y2�x�

]
�3�

where Y1�x� D log W�x� � �w and Y2�x� D log D�x� � �D, letting W�x� and D�x� be the water-surface width
and average depth at location x, which is a continuous variable. This continuous process is sampled at points
x apart, or Zn D Y �nx�. It is the underlying process Y(x ) about which we are interested in making
inferences. Assuming the existence of the continuous process Y(x ) allows us to obtain results that are not
dependent on the magnitude of the sampling interval x. This is important because x changes from river
to river. Assume that the bivariate process Y(x ) obeys a continuous analogue of Equation 2, namely:

d

dx
Y �x� C � Y �x� D A�x� �4�

where � is a 2 ð 2 matrix of parameters. It may be shown that if a continuous process obeying Equation 4 is
sampled at equal intervals x, then the resulting process obeys the model Equation 2, provided the parameters
of the models are related by:

� D e��x. �5�

The exponential of a matrix in this equation is interpreted in the usual way, i.e. in terms of a series expansion,
or exp�M� D 1

iD0Mi/i! where M is a matrix.

Integral length scale

In this paper, the integral length scale is the same as the correlation distance defined by others. The integral
length scales Li (i D 1 or 2) for the two components of the bivariate process Y(x ) are defined to be analogous
to the integral time scale (Batchelor, 1982) to be:

Li D
1∫

0

Ri�u� du, �6�
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where Ri�u� is the autocorrelation function of Yi�x�. The covariance function C (u) of Y(x ) at lag u is given by:

C�u� D exp ���u�C�0� �7�

(Jenkins and Watts, 1968, p. 474), from which we may obtain the autocorrelation function by R�u� D
�1C�u��1 where  is a diagonal matrix with diagonal elements equal to the standard deviations

p
cii�0�.

From Equation 6 with covariance function given by Equation 7, it is seen that the integral length scales are
diagonal elements of the 2 ð 2 matrix:

�1��1C�0��1 D �1��1R�0� �8�

The computations in obtaining the integral length scale, given parameter estimates obtained by analysis of
the discrete data, are most easily done as follows. Let 	i be the eigenvalues of �, U D �u1, u2� the matrix of
eigenvectors, and

V D U �1 D
[

vT
1

vT
2

]

where T denotes transpose. Then using Equation 7 and standard results in matrix algebra (Searle, 1982,
chapter 11), the covariance matrix C (u) may be written as:

C�u� D �˛e�	1u C ˇe�	2u�C�0� �9�

where ˛ D u1v
T
1 and ˇ D u2v

T
2 . Moreover, from Equation 5 the eigenvalues 
i of � are related to those of

� by


i D e�	ix or 	i D � log 
i

x

and the two matrices have the same eigenvectors. Therefore, the integral length scales for the bivariate process
are obtained as diagonal elements of a 2 ð 2 matrix:

�L1, L2� D diag

[
�1

(
˛

�x

log 
1
C ˇ

�x

log 
2

)
R�0�

]
�10�

Estimates from the data were obtained by substituting for 
i in Equation 10, the eigenvalues of the estimated
autoregressive parameter �. Likewise the corresponding eigenvectors were used to obtain estimates for ˛ and
ˇ. C (0) (and hence ) are simply estimated using corresponding second moments of the data.

It is important to appreciate the implications of assuming the existence of the continuous process Y(x )
obeying Equation 4. In doing this it is assumed that the exponential form of the covariance function in
Equation 7 is known to hold for all lags u. In fact, the covariance function can be estimated only for lags
that are a multiple of the sampling interval, so assumption of the form of the continuous process Y(x )
actually represents an extrapolation of what behaviour the variables would exhibit if they had been sampled
at shorter lags. This phenomenon can be viewed in terms of the spectrum, which is the Fourier transform of the
correlation function. The continuous autoregressive process in Equation 4 has a spectrum that is defined for all
wave numbers, whereas the discrete process Zn possesses a spectrum only for wave numbers with magnitude
less than 1/2x, the Nyquist wave number (spatial analogue of the Nyquist frequency). Determination of the
integral length scale based on the correlogram of a discrete process is dependent on the sampling interval. By
assuming the continuous mode, the method is independent of the sampling interval and we can extrapolate to
wave numbers beyond the Nyquist wave number. However, the caveat is that the goodness of the extrapolation
depends on how well the process Y(x ) actually obeys the assumed model (Equation 4).
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RESULTS

The probability distribution of water-surface width and average depth are nearly log-normal as indicated by
quantile–quantile plots (Figure 3). The use of log transformations is consistent with methods that have been
traditionally applied to estimate channel geometry (Leopold and Maddock, 1953), and thus, makes the data
easy to compare with previous work. The most noticeable departures from normality are for one or two data
points in the tail of the distribution in some cases (for example: log(Width) and log(Depth) in the Powder
River, 17 m3 s�1).

We next look in more detail at results for: (1) the mean of the probability distribution of log-transformed
variables; (2) the standard deviation of the distribution expressed as the coefficient of variation; (3) joint
probability distribution of water-surface widths and average depths represented by the autoregressive model;
and (4) the downstream correlation distance or the integral length scale. We are especially interested in
variations in the properties as a function of discharge. Discharge may be thought of as a measure of scale,
and we thus wish to look at scaling properties of the probability distributions of the variable. It is necessary
to understand these scaling properties if, for example, extrapolations are to be made to other rivers for which
detailed morphological data may not be available or for modelling purposes.

Mean of the probability distributions

The mean of the log-transformed variables is found to be linearly related to the logarithm of discharge.
Regression relations are:

O�W D log �17Q0Ð45� r2 D 0Ð98 �11�

O�D D log �0Ð18Q0Ð43� r2 D 0Ð99 �12�

where O� is the regression estimated values of the mean of the log-transformed variables. These linear relations
in the transformed variables are equivalent to power laws for untransformed variables and are identical in
form to those proposed by Leopold and Maddock (1953) for downstream variations in width, depth, and
velocity in the same river or drainage system.

Coefficient of variation

The coefficient of variation provides a measure of spatial variability relative to the mean. It varied in
a relatively narrow range from 0Ð13 to 0Ð42 over four orders of magnitude in discharge (Table II). The
minimum value was essentially the same �0Ð13–0Ð17� for both the Powder River �17 m3 s�1� and the Upper
Mississippi River. The maximum values �0Ð38–0Ð42� were for the Lower Mississippi River. Average values
of the coefficient of variation for the two morphological variables were 0Ð25 for W and 0Ð28 for D.

Autoregressive model

The autoregressive model was fit initially by allowing the order to be greater than one. For a more
general order p > 1 model, the right hand side of Equation 2 would be augmented by including terms in
Zn−2, Zn−3, . . . , Zn−p in addition to Zn−1. The Akaike information criterion (AIC) indicated that a first-order
model �p D 1� was indicated in all cases except the Powder River �1Ð5 m3 s�1�, the Lower Mississippi River
(Reach B), and the Lower Mississippi River (Reach C), for which p was 2, 2, and 3, respectively. In each
of these three cases, however, improvement over a first-order model was only marginal in terms of both the
AIC value and the percentage explained variance. It was felt that applying the same model to all reaches
would be advantageous in terms of making comparisons. In addition, the straightforward correspondence
between discrete and continuous models, as in Equations 2 and 4, does not hold if p > 1. Thus, all cases
were reanalysed with p D 1. Estimates of the autoregressive parameters � and the corresponding percentage
of total variance explained by this model are given in Table II.

Integral length scale

The integral length scales, Li, computed using Equation 10, are given in Table II. They were found to
exhibit power-law scaling with discharge, and this scaling was not significantly different (at the 5 per cent
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Table II. Statistical characteristics of populations of cross-section morphological variables sampled at regularly spaced
channel cross-sections

Cross-section Mean Mean Coefficient of Autoregressive model Integral length-scale L

morphological Log10-transformed variation [
�11 �12
�21 �22

]
Percentage of (meters) (mean channel

variablesa variable total variance widths)

Clear Creek, 0Ð9 m3 s�1

W (m) 11Ð4 1Ð04 0Ð30 0Ð62 0Ð12 32 14 1Ð2
D (m) 0Ð24 �0Ð64 0Ð37 �0Ð29 0Ð48 38 15 1Ð3
Powder River, 1Ð5 m3 s�1

W (m) 33Ð5 1Ð51 0Ð22 0Ð85 0Ð41 38 36 1Ð1
D (m) 0Ð16 �0Ð82 0Ð27 �0Ð58 �0Ð05 19 19 0Ð6
Powder River, 17 m3 s�1

W (m) 48Ð5 1Ð68 0Ð15 0Ð16 0Ð00 3 32 0Ð7
D (m) 0Ð51 �0Ð30 0Ð17 �0Ð19 0Ð21 11 49 1Ð0
Upper Mississippi River, 4620 m3 s�1

W (m) 576 2Ð76 0Ð13 0Ð45 �0Ð14 29 830 1Ð4
D (m) 8Ð1 0Ð91 0Ð13 �0Ð19 0Ð41 27 780 1Ð4
Lower Mississippi River, reach A, 8800 m3 s�1

W (m) 1160 3Ð05 0Ð24 0Ð82 0Ð09 55 1880 1Ð6
D (m) 7Ð3 0Ð85 0Ð26 �0Ð31 0Ð53 62 2040 1Ð8
Lower Mississippi River, reach B, 10 900 m3 s�1

W (m) 1210 3Ð06 0Ð36 0Ð86 �0Ð01 76 4610 3Ð8
D (m) 10Ð6 0Ð99 0Ð42 �0Ð22 0Ð61 58 3100 2Ð6
Lower Mississippi River, reach C, 11 800 m3 s�1

W (m) 1140 3Ð03 0Ð38 1Ð04 0Ð27 73 2920 2Ð6
D (m) 8Ð4 0Ð90 0Ð33 �0Ð47 0Ð31 69 2520 2Ð2

a W, channel top width; D, average cross-sectional depth.

level) for water-surface width and average depth. Thus, the single regression equation is:

L D 14Q0Ð54 r2 D 0Ð97 �13�

Examination of Table II suggests that the integral length scale and mean channel width are of comparable
magnitude, so the behaviour of the ratio of integral length scale to mean channel width was considered. The
ratio ranges from 0Ð7 to 3Ð8 for width and from 0Ð6 to 2Ð6 for depth (Table II). Log-linear regression with Q
reveals that the ratio increases slowly as discharge increases:

L

W
D 0Ð86Q0Ð095 r2 D 0Ð95 �14�

where W is mean channel width.

DISCUSSION

Mean of the probability distributions

The regression relations 11 and 12 are estimates of the mean of the probability distribution of log-
transformed water-surface width and average depth. It is of interest to compare these regressions relations
to the relations obtained in downstream hydraulic geometry studies ( OW D aQb and OD D cQf) as defined by
Leopold and Maddock (1953). Values they give for the exponents of Q are b D 0Ð5 and f D 0Ð4, which are
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close to our values of 0Ð45 and 0Ð43 respectively. The fitted coefficients in downstream hydraulic geometry
studies are usually obtained by log–log regression of width and depth with Q, so in this sense previous
studies like this study yield estimates of the mean of log width and mean of log depth. The main difference
is that, in previous studies to obtain downstream hydraulic geometry relations, discharge was typically fixed
at mean annual discharge. In this study, discharge values were not so fixed. However, because the range of
discharges under consideration in this study is large (1 to 10 000 m3 s�1), at-a-station discharge variability is
small compared to overall discharge variability, and the regression relations we obtained would have changed
only slightly had we fixed our measurements at mean annual discharge. Thus, our relations 11 and 12 may be
considered essentially downstream hydraulic geometry relations, although we have extended the concept of
downstream hydraulic geometry from the way it is typically applied by pooling rivers that are from diverse
geographical regions and that vary widely in discharge.

In obtaining Equations 11, 12, and 13 from the diverse rivers in this study, we were interested in exploring
the possibility that there are universal scaling relations of width and depth with discharge. While we do
not have the detailed cross-sectional data for rivers other than those in this study to look at integral length
scale, we can draw upon existing data sets from around the world to look at the mean of the distributions.
Pooling data from world rivers also helps alleviate the problem in traditional channel geometry studies of
the large uncertainty in a and c that results from trying to determine these coefficients using only a narrow
range (generally only one or two orders of magnitude) of values for W, D, and Q. We performed log–log
regressions of W and D against Q for a subset of world rivers, ranging from small, steep mountainous streams
to some of the largest alluvial rivers and for which discharges varied from 8 ð 10�3 to 2 ð 105 m3 s�1. As
stated above, at-a-station discharge variability is small compared to overall discharge variability in these
regressions, so the discharge does not need to be fixed at mean annual discharge to obtain relations that are
essentially downstream hydraulic geometry relations. The data for the subset of world rivers are plotted along
with some of Leopold and Maddock’s (1953) data and the data from this study (Figure 4). The regression
relations obtained are:

OW D 7Ð2Q0Ð50š0Ð02 �2Ð6 � 20Ð2� �15�

OD D 0Ð27Q0Ð39š0Ð01 �0Ð12 � 0Ð63� �16�

where the 95 per cent confidence intervals for b and f follow the š sign and intervals for a and c are given
in parentheses. The regression standard error of estimate for the general relations (15 and 16) are 0Ð22 and
0Ð18 respectively; because of the logarithmic transformation, these numbers represent coefficient of variation
at a given discharge. Logarithmically transforming these equations would yield estimates of the mean of log
width and mean of log depth. The estimate of the coefficients and exponents would probably change little
with more data because the number of data pairs is 226 and these include measurements for the largest as
well as some of the smallest rivers in the world.

In summary, there seems to be merit in the idea of looking at the width and depth scaling over a very wide
range of discharges for rivers around the world, and the subset of rivers included in this study is representative
in terms of the regression relations. These regressions, however, yield only the means of the logarithmically
transformed width and depth; detailed cross-sectional data at regular intervals such as that in this study will
be needed to test further the universality of power-law behaviour for the integral length scale.

Coefficient of variation

Generally, the coefficient of variation for data in this study tends to be fairly stable �0Ð13–0Ð42� over a
wide range of discharge and thus, water-surface widths and average depths are on the average within about
40 per cent of the mean. The coefficient of variation for the Powder River �17 m3 s�1� and for the Upper
Mississippi River tended to be somewhat less than for the other channels. This is not surprising for the Upper
Mississippi River which is engineered to be a uniform navigation channel but the Powder River seems to have
achieved a similar uniform but self-formed channel within its relatively easily eroded floodplain. Clear Creek,
on the other hand, had the largest variability which might be expected a priori because of the variability
imposed by large, resistant and irregular bed material and topography. Similarly, a smaller mountain river
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Leopold & Maddock, 1953: W = 9.1Q0.48
    R2 = 0.94

This study:  W = 17Q0.45    R2 = 0.98

Other data:  W = 7.2Q0.50    R2 = 0.94

Williams and Rosgen, 1989, Alaskan and United States Rivers

Posada, 1995, South American Rivers

Moody and Meade, 1992a,b, 1993, and 1995, Mississippi River & Tributaries

Moody and Meade, unpublished data for Siberian Rivers

Moody and Martin, 2001, Mountain streams

Vollmers and Espada,  1983,  Bolivian River

Laboratoire de Recherches Hydrauliques, 1971,  Zaire River

Jinren Ni, written commun.,2001, Yellow and Yangtze Rivers and some tributaries
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Figure 4. General relations between channel width and discharge. Data from this study are shown as C symbols, data from Leopold
and Maddock (1953) are shown as open circles, and data from 226 measurements on various rivers throughout the world are shown as

solid circles

(Middle Boulder Creek; Furbish, 1985) with mean annual discharge of 1Ð53 m3 s�1 had an average coefficient
of variation �0Ð45� slightly larger than Clear Creek. The increase in the coefficient of variation for the Lower
Mississippi River may be a result of the multiple channels. Powder River is perhaps the most ‘natural’ river
of the four studies in this paper, with no flood controls, no irrigation diversion structures, no urban impact,
and no navigation, and had the lowest average variability �0Ð17�. However, the average variability for the
same river at lower discharge �1Ð5 m3 s�1� was greater �0Ð28� which supports the idea that higher discharges
‘drown’ out spatial variability present at lower discharges.

The small range of the coefficient of variation in these data is important for the following reason. Using the
relations in Equations 11 and 12, the width and depth can be scaled by a function of discharge which makes
the mean (with a logarithmic transformation) independent of discharge. In addition, if the changes in the
coefficient of variation with discharge are small enough to be ignored, then the probability distribution (not
just the mean) of these scaled morphological variables will be independent of discharge or scale. For example,
using Equation 11, W/17Q0Ð45 has a distribution that is independent of Q. If such a structure (known as ‘simple
scaling’) holds, then estimates of the magnitude and variability of W may be made for channels for which
detailed cross-sectional data are not available. This is similar to what is done for an index-flood approach to
flood frequency analysis. For this approach, annual peaks are scaled by some function of discharge, such as
the mean annual discharge, in order to obtain a quantity that has a distribution independent of drainage area.
This allows scaled flows for different areas to be combined for regionalization. Gupta and Dawdy (1995) and
Hosking and Wallis (1997) give a complete discussion of advantages and problems with such a procedure.
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Integral length scale

For modelling purposes, the integral length scale is important because it determines how the correlation of
width and depth changes with spacing of channel cross-sections in the downstream direction. The approach
used in this study makes inferences about the underlying continuous bivariate spatial process in natural
channels based on discrete measurements at intervals. Such an approach may be compared to studies for
univariate processes done previously. The integral length scale given in Equation 10 for a bivariate continuous
process reduces to L1 D �x/ log �1, where �1 is the lag one autoregression coefficient, for a discrete
univariate process. Using this relation, integral length scales were estimated for discrete spatial series (supplied
by M. Church) for the North and Middle Rivers on Baffin Island and for a steep alluvial cone channel, Harvey
Creek, adjacent to Howe Sound, and for a small mountain stream in Colorado using �1 values reported by
Furbish (1985). The estimates of the integral length scale are 2Ð8, 3Ð7, 0Ð2, and 1Ð1 mean channel widths and
these fall within the range of values for this study. Madej (1999) reported correlation distances for thalweg
depths in Redwood Creek were approximately one mean channel width and changed with time following a
flood. Sidorchuk (1996) used spectral methods and identified unstable bed undulations on the order of two
mean channel widths which were important in increasing bank erosion and meander development. These
estimates of the integral length scale based on the discrete univariate process in the downstream direction, in
the cross-stream, and in the vertical directions are very similar to the estimates of the integral length scale
based on the assumption in this study of a continuous bivariate process.

The integral length scale, L, exhibits power law scaling with Q, and the coefficient and scaling exponent
are the same for both morphometric variables. In the previous section it was noted that the distribution
of morphological variables closely approximates a simple scaling structure. For example, W/17Q0Ð45 has a
distribution that is nearly independent of Q, where W is water-surface width at a single cross-section. With
the additional information provided by the integral length scale, we can now determine the scaling structure
of the entire stochastic processes defined by the morphometric variables as a function of longitudinal distance.

To be more specific, let us consider the channel width–depth process fW�x�, D�x�g, where the brackets here
indicate that we are interested in the joint probability distribution of these variables at multiple cross-sections.
Any simulation of the width–depth process over a reach (as opposed to at a single cross-section) would
require specifying this joint behaviour. Using the power-law relations in Equations 11, 12, and 13, it is seen
that the scaled process: {

1

17Q0Ð45 W�14Q0Ð54x�,
1

0Ð18Q0Ð43 D�14Q0Ð54x�

}
�17�

has joint distributions that are independent of Q. This may be seen as follows. We may define a process
fY 0�x�g:

Y 0�x� D
[

Y0
1�x�

Y0
2�x�

]
�18�

where Y0
i�x� D Yi�14Q0Ð54x�. Thus fY 0�x�g is fY �x�g in Equation 3 with a rescaling of downstream dis-

tance using discharge. The process fY 0�x�g has covariance function given by exp��14Q0Ð54�u�C�0�, using
Equation 7. From Equations 8 and 13, the autoregressive parameter � scales as Q�0Ð54, i.e. the covariance
function of fY 0�x�g is independent of Q, and hence the scaled process in Equation 17 is independent of Q.

SUMMARY AND CONCLUSIONS

Spatial variability of two fundamental channel morphological variables, water-surface width and average
depth, has been investigated at the channel-link scale where the discharge is nearly constant. The spatial
variability within a channel link exhibits a similarity across large changes in scale (five orders of magnitude).
These morphological variables have nearly log-normal probability distributions. General relations 11 and
12 were determined that relate the means of the log-normal probability distributions to the discharge. The
coefficient of variation of the distributions varied little with changes in discharge and ranged from 0Ð13 to
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0Ð42, indicating a simple scaling structure. A bivariate autoregressive model was used to investigate spatial
correlation in the downstream direction and integral length scale. The integral length scale was found to
exhibit a power-law scaling with discharge, Equation 13, and was generally about one to two mean channel
widths in magnitude for both width and depth. In combination, these results indicate that scaling water-surface
widths and average depths by the functions of discharge in Equations 11 and 12, and at the same time scaling
downstream distance by the integral length-scale in Equation 13, yields processes that do not depend on
discharge. Thus, the results are representative of a wide range of flow conditions and it is believed that,
using the scaling behaviour, the results will be applicable to rivers not included in this study, although further
detailed cross-sectional data for other rivers needs to be collected to test further this hypothesis.

One application of the bivariate autoregressive model developed in this study is to simulate width and depth
at cross-sections or for channel links for which detailed data may not be available. This extends previous
studies which have looked at statistical variability of link length and link elevation drop. The scaling properties
investigated here will be valuable to modellers of both basin and channel dynamics. The solution accuracy
and hence the predictive power of all types of models will improve if techniques can be developed to properly
parameterize spatial variability of morphometric variables in these models.
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